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Abstract. We have carried out extensive computer simulations of one-dimensional models
related to the low noise (solid-on-solid) non-equilibrium interface of a two-dimensional anchored
Toom model with unbiased and biased noise. For the unbiased case the computed fluctuations of
the interface in this limit provide new numerical evidence for the logarithmic correction to the

subnormalL
1
2 variance which was predicted by the dynamic renormalization group calculations

on the modified Edwards–Wilkinson equation. In the biased case the simulations are in close
quantitative agreement with the predictions of the collective variable approximation (CVA),

which gives the sameL
2
3 behaviour of the variance as the KPZ equation.

1. Introduction

The nature of the interface separating two equilibrium phases, or more generally any two
distinct bulk states of matter, is a problem of continuing interest. While there is in most
cases some fuzziness in the transition region, giving rise to an intrinsic structure, the width
of this is usually much smaller than (and therefore separable from) the fluctuations in the
location of the interface. These fluctuations are fairly well understood both microscopically
and macroscopically in (simple) equilibrium systems [1], but much less is known about
them in the larger context of non-equilibrium situations [2].

An important advance in the latter case was the introduction of equations of the
Edwards–Wilkinson [3] and Kardar–Parisi–Zhang [4] type to describe fluctuations in
dynamically moving interfaces. Solutions of these equations appear to describe in a
quantitative manner the macroscopic fluctuations of a large class of such interfaces [2].
It is probably fair to say, however, that there are few microscopic systems (even simple
ones) for which one can arguea priori, with mathematical rigour, that their behaviour will
be described by these equations.

Several years ago two of us (JLL and ES), together with B Derrida and H Spohn [5, 6],
introduced and studied the behaviour of the low-noise-limit sharp interface separating the+
and− phases in a simple-model non-equilibrium system—the 2D Toom cellular automaton.
Our semi-infinite interface was situated in the third quadrant of the square lattice and was
anchored at the origin. Its precise location could be specified by a spin configuration on
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the positive semi-infinite one-dimensional integer latticeZ+. Fluctuations of the location of
the interface at a distanceL from the origin are then directly transcribed into fluctuations
of the magnetizationML = ∑L

i=1 σi in the stationary state of the one-dimensional model.
The dynamics of the semi-infinite 1D spin model are as follows. Starting with some

initial configuration (containing a mixture of+ and− spins) we pick a sitei with rate 1 if
σi = −1, and with rateλ 6 1 if σi = 1, and exchangeσi with the spinσj , wherej is the first
site to the right ofi such thatσj = −σi . Remarkably, the model inherits the unidirectional
nature of information flow in the Toom model and the stationary state for the firstL spins
can be obtained exactly (no finite-size effects) by restricting the dynamics to a system withL

spins, with the provision that if sitei is in the last block of spins, i.e. ifσi = σi+1 = · · · = σL,
then the spinσi is flipped, i.e. changed to−σi (with rate 1 orλ). The model can be classified
into two cases, the unbiased case withλ = 1, and the biased case withλ 6= 1.

The quantities of interest in the model include the average of the magnetization〈ML〉
and its variationVL ≡ 〈(ML − 〈ML〉)2〉 as functions of the system sizeL. By symmetry,
〈ML〉 = 0 in the unbiased case, and a simple computation, using the well justified assumption
that spins far from the origin are statistically independent, shows that in general〈ML〉 ' µL

with µ = 1−√
λ

1+√
λ

. The fluctuations have not been calculated exactly. Simulations reported in

[5] gaveVL ∼ Lν with ν = 0.53 in the unbiased case andν = 0.57 for λ = 1
4, but in fact

approximate treatments discussed there suggested that the true exponents areν = 1
2 in the

unbiased case, possibly with logarithmic corrections, andν = 2
3 in the biased case.

Two approximation methods were introduced in [5]. The first, thecollective variable
approximation (CVA), gives V CV

L ' √
3/2L1/2 in the unbiased case andV CV

L ' CL2/3

(with C a computable constant) in the biased case. The second approach was based on a
description of the interface by a nonlinear stochastic diffusion equation of the EW [3] and
KPZ [4] type. Analysis of this equation predicts how fluctuations of a (doubly) infinite
uniform interface will grow in time; in the semi-infinite problem, the fixed boundary at
the left of the system and the positive velocity of excitations convert this growth to a
correspondingL-dependence ofVL. This approach predictsVL ∼ L2/3 in the biased case
(here 2

3 is the usual KPZ exponent). In the unbiased case the prediction depends on the
growth of excitations in a modified KPZ equation with a third order, but no second order,
nonlinearity; a subsequent renormalization group analysis of this problem [7] (see also [8])
leads to the predictionVL ∼ L1/2 log1/4(L/L0).

The simulation results of [5] did not include sufficiently large systems to distinguish
the logarithmic behaviour in the unbiased case from behaviourLν , with ν a power slightly
higher than 1

2, or to verify the power2
3 in the biased case. Simulations of [7] and [8]

support the renormalization group conclusions for a uniform system but, since the passage
from the uniform to the semi-infinite system is somewhat heuristic, provide only indirect
guidance for the latter. In the present note we describe new simulations on our original
model forL 6 219 both forλ = 1 andλ = 1

4. We also did simulations on modified models
and models with different bias values. Our results on the unbiased case give support to the
predictions of [7]. Our results for the biased case seem to suggest that the CVA is a very
good approximation.

For computational efficiency, we used a type of ‘multi-spin coding’, similar to the
technique applied for simulating the repton model in [9, 10]. The computationally intensive
part of the code is written in bit operations like AND (∧), exclusive OR (⊕) and NOT
(¬). This allows one to run 32 or 64 independent simulations in parallel by applying
bit operations to four-byte or eight-byte integers of which each bit corresponds to an
independent simulation.
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We introduce a coding variableηj = (1 + σj )/2. To implement the algorithm, we first
choose (as described below) a markerm, whose non-zero bits select the simulations in
which updating will take place, then pick a random sitej and flip the selected spins at this
site:

η′
j = m ⊕ ηj . (1)

Next we walk along the chain, starting atk = j +1 and incrementingk by one at each step.
In each simulation we flip the spinσk if it differs from σj and if so we set the corresponding
bit in the marker to zero:

d = ηk ⊕ ηj (2)

η′
k = ηk ⊕ (m ∧ d) (3)

m = m ∧ ¬d. (4)

We continue walking until either our markerm equals0 or we have reached the end of
the chain. To insure that simulations running in different bits do not become identical, we
initialize m as m = r, wherer is a random bit-sequence with each bit taking the value 1
with probability 1

2, and then repeat with a different starting sitej and withm = ¬r. This
generates a large degree of independence between simulations corresponding to different
bits.

To obtain the maskm we use the random number generator marsag [11], which has
good randomness properties for all the bits; for the site selection we use the random number
generator ranmar [11], which has a long sequence and good spectral properties.

In the absence of a bias (λ = 1), the thermalization timet0 required was determined to
be t0 = L2/8 spin exchanges. The autocorrelation time of the magnetization in the steady
state is much smaller, growing asL3/2, as also found in [5], although the thermalization
time suggests that some correlations must grow asL2. The presence of a bias increases the
required thermalization time; forλ = 1

4, t0 ≈ L2/4 and forλ = 1
8, t0 ≈ L2/2. For λ = 1

2
we took againt0 ≈ L2/4 as thermalization, although we could have taken a bit less. One
run typically starts with a random spin configuration, which is evolved over time(n + 1)t0.
The magnetization in each simulation (corresponding to a bit) is measured everyL moves;
for each interval of lengtht0 a separate histogram of the magnetizationM, including all bit
simulations, is constructed. The first histogram is discarded (thermalization) and from the
remainingn histograms we obtain moments of the magnetization. Reported statistical errors
in these moments are one standard deviation errors based on the assumption that thesen

histograms are statistically independent. Note that even if simulations in different bits are
correlated, we still obtain a reliable error estimation.

2. The unbiased case

In the absence of bias (λ = 1) we now have data for sizesL 6 219, presented in table 1.
Two analytic descriptions of the growth of fluctuations have been proposed: in [5] it was
suggested that

VL ' CLν (5)

with ν ' 0.5; on the other hand in [7] (see also [8]), a formula based on the dynamical
renormalization calculation was proposed:

VL ' CL1/2 logβ(L/L0) (6)
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Table 1. The variances obtained for the unbiased case for different values ofk. The quantity
in brackets after each value is the statistical error in the least significant digit.

L VL = VL(1) VL(2) VL(3)

2 1.335[1] 2 2
4 1.918[1] 2.75[1] 3.637[1]
8 2.733[1] 3.818[1] 4.626[2]

16 3.890[1] 5.271[1] 6.451[2]
32 5.576[2] 7.338[3] 8.868[6]
64 8.02[2] 10.286[4] 12.292[6]

128 11.58[3] 14.543[4] 17.20[1]
256 16.76[3] 20.66[1] 24.27[2]
512 24.22[4] 29.44[2] 34.37[2]

1024 35.01[3] 41.96[6] 48.70[3]
2048 50.54[9] 59.94[8] 69.20[3]
4096 73.1[1] 85.6[2] 98.41[4]
8192 105.3[2] 122.4[1] 139.90[7]

16 384 151.7[4] 174.6[3] 199.2[2]
32 768 218.3[5] 249.9[4] 283.1[3]
65 536 313[1] 355.4[4] 402.4[5]

131 072 449[2] 507[3] 573[2]
262 144 644[4] 720[2] 813[3]
524 288 924[3] 1162[5]

with β = 1
4 andL0 = 8. In this section we will argue that this data supports the conclusion

of [7], although we disagree on the identification of the constantL0.
Clearly it is difficult to distinguish between the behaviours (5) and (6). For example,

the quantityVL/(L1/2 logL) is a monotonic decreasing function ofL throughout the range
of our simulations andVL/(L1/2 log1/8 L) is monotonic increasing forL > 64, suggesting
asymptotic behaviour (6) for some intermediate value ofβ, but in fact the same is true if
VL is replaced byL0.53, the behaviour found in [5].

As a qualitative criterion for comparison of fit, we ask for what minimal value 2K of the
system size various proposed forms (all having two free parameters) can provide a good fit
over interval [2K, 219], rejecting a fit as bad if it fails the standardχ2 test at a 99% confidence
level. The asymptotic form (5), computed as a linear fit log(VL/L1/2) ∼ a + b logL, yields
K = 12, while the forms (6), again as linear fits(VL/L1/2)1/β ∼ aβ + bβ logL, yield
K = 11, 6, 8, and 10 forβ = 1, 1

2, 1
4, 1

6, respectively. This analysis thus provides evidence
in favour of (6), which describes the data over a wider range of system sizes, although it
does not conclusively rule out (5).

We now consider (6) and ask whether our data can determine the exponentβ. The
difficulty is that the three parameters in (6) provide a great deal of freedom, allowing for
good fits for a range of values ofβ, if we vary the values ofL0 andC. The test discussed
above is indefinite, and in fact mildly favours a value of1

2, as opposed to the renormalization
group calculation of14. We now turn to a different line of argument which does provide
evidence for the latter value, and begin with a review of the second approximate approach
of [5].

As mentioned in the introduction, the application of the renormalization group depends
on consideration of our dynamical model on the doubly infinite line, viewed as a height
interface growth model. Such interface growth models may be described by nonlinear
stochastic diffusion equations of the EW and KPZ type; for our model the symmetries in
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the problem lead to the equation

dh

dt
= ν

d2h

dx2
+ v1

dh

dx
+ v3

(
dh

dx

)3

+ η(x, t) + higher order terms (7)

whereη is a stochastic noise term. The term in (7) with coefficientv1 is usually eliminated
by a Galilean transformation, but this is not possible in the semi-infinite system and in
fact this term has important consequences, discussed below. Ifv3 = 0, then (7) is the
Edwards–Wilkinson growth model, which leads to interface growth〈h(t)2〉 ∼ t

1
2 . The

full equation (7) can be analysed using dynamical renormalization techniques [7]; in this
analysis the higher order terms are irrelevant and the cubic term is marginally irrelevant,
giving

〈h(t)2〉 ' At
1
2 log

1
4 (t/t0). (8)

The parameterv1 is positive, so that fluctuations inh(t) travel to the right. We can compute
the velocity v of infinitesimal density perturbations in the (Bernoulli) steady state, via
v = ∂J/∂ρ

∣∣
ρ=1/2, whereJ (ρ) is the current at densityρ, to find v = 8 [7]. To apply

these observations to the original model on the half-open system it was suggested in [5]
that excitations created at the closed end of the system grow according to (8) as they travel
towards the open end at speedv; this leads to (6) withβ = 1

4, C = A/v1/2, andL0 = vt0.
(See also [7], although there it is tacitly assumed thatt0 = 1).

In order to understand the exact form of the logarithmic corrections and check the
validity of the above prediction, we studied a class of modifications of the original model,
with dynamics defined as follows. We choose a site at rate 1, then exchange the spin at that
site with thekth spin of opposite sign to the right. The original model is obtained by taking
k = 1. These models all share the symmetries of the original, so we expect that they will
belong to the same universality class and hence have similar behaviour of fluctuations; thus
the varianceVL(k) in these models should satisfy (6) with the same value ofβ but with
possibly different constantsL0(k) and C(k). We obtained data for models withk = 2, 3
(see table 1). Again, we can fit (6) to the individual data sets for a range of values ofβ

if we choose appropriateL0(k) andC(k); to proceed further, we would like somea priori
arguments determining how these values depend onk.

Now we propose a heuristic argument which describes how the constantC(k) might
vary with k. On the one hand, a computation in the steady state determines that the
current in this model is proportional tok and hence that the velocityv(k) of excitations
satisfiesv(k) = kv(1) = 8k. On the other hand, the model for parameterk can be thought
of as a modification of the original model in which, during one time step,k exchanges
rather than one spin exchange take place. Now thesek exchanges take place in correlated
positions. These correlations are certainly significant on the microscopic scale (e.g. the
distance between two successive moves would definitely be affected by these correlations),
but as seen from the computation of the current and the velocity these correlations are
apparently not important on the hydrodynamic scale. Hence there should be some length
scale below which the correlations are significant. We have two parameters in (6) which
could be affected by these correlations,C(k) and L0(k). C(k) (along with β) determines
the behaviour to leading order at largeL, andL0(k) is significant only at higher orders. If
we assume that the correlations are not important at least to the order determiningC(k),
then for a computation ofC(k), the model for parameterk would correspond to the original
model with the time rescaled by a factor ofk. This would imply thatA(k) ∼ k1/2A(1), and
hence thatC(k) = A(k)/v(k)1/2 = C(1).
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Figure 1. If VL ≈ C(k)L1/2 logβ (L/L0), then(VL/L1/2)1/β as a function of logL is a straight
line with slopeC(k)1/β . In the figure,(VL/L1/2)1/β is plotted as a function of logL for k = 1
(+), k = 2 (◦), and k = 3 (♦), and β = 1

4 . The curves fork = 1 andk = 2 are shifted
vertically, to obtain a collapse. The insets show that forβ = 1

2 (left inset) andβ = 1
6 (right

inset) the data does not collapse.

Table 2. Values of aβ and bβ obtained from least-squares fits on the data for the unbiased
model.

k a1/2 a1/4 a1/6

1 0.694± 0.018 0.086± 0.050 −0.969± 0.102
2 1.376± 0.023 1.682± 0.084 1.551± 0.228
3 2.052± 0.018 4.104± 0.084 7.924± 0.300

k b1/2 b1/4 b1/6

1 0.073± 0.002 0.194± 0.006 0.386± 0.013
2 0.050± 0.003 0.184± 0.009 0.507± 0.025
3 0.038± 0.002 0.179± 0.010 0.640± 0.036

Another way of saying this, which does not make any reference to the time-dependent
problem, is to write〈M2

L+1〉 = 〈M2
L〉 + 2〈σL+1ML〉 + 1. Since〈M2

L+1〉 − 〈M2
L〉 → 0 as

L → ∞, we must have〈σL+1ML〉 → − 1
2 + o(L). Now if the leading order term in o(L)

is also independent ofk (which seems not unreasonable) then we would also haveC(k)

independent ofk and vice versa.
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Table 3. The variances for three different values of bias, and the first and third moments for
λ = 1

4 . Note that we have not obtained data for systems of size smaller than 1024. The statistical
error in the least significant digit is given by the quantity in brackets.

VL 〈M〉L 〈(M − 〈M〉)3〉L VL VL

L λ = 1
4 λ = 1

4 λ = 1
4 λ = 1

2 λ = 1
8

1024 36.82[6] 344.57[2]−0.171[6] 35.7[1] 37.0[2]
2048 55.3[1] 686.98[2]−0.185[2] 52.4[2] 57.2[3]
4096 83.4[2] 1371.06[3]−0.204[4] 76.4[4] 88.5[6]
8192 128.8[4] 2738.32[5]−0.225[3] 111.9[5] 136.6[8]

16 384 193[2] 5471.4[1] −0.240[3] 165.5[6] 215[2]
32 768 302.7[6] 10 936.1[3] −0.256[2] 247[1] 344[3]
65 536 473[1] 21 862.62[6]−0.266[4] 370[5] 533[5]

131 072 735[4] 43 713.2[2] −0.281[6] 566[5] 849[10]
262 144 1165[7] 84 105.9[2] −0.266[5]

Figure 2. VL/L2/3 is plotted as a function of logL, for λ = 1
8 (♦), λ = 1

4 (◦), andλ = 1
2

(�). In the first two cases the data shows convergence to a constant, indicating thatVL ∼ L2/3

without logarithmic corrections. The lines are the CVA values for the corresponding biases; the
asymptotic CVA values are 0.3150, 0.2723 and 0.1855, respectively.

To study thek-dependence ofC(k), we plot in figure 1(VL(k)/L1/2)1/β versus logL
for β = 1

2, 1
4, and 1

6; according to equation (6) this curve is approaching a straight line with
slopeC(k)1/β and offsetC(k)1/β log(L0). Only for β = 1

4 can a data collapse be obtained
by vertically shifting the curves (which corresponds to a change inL0), indicating that
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Figure 3. Normalized distribution (with mean 0 and standard deviation 1) of the magnetization
ML for the biased case (λ = 1

4) with system sizesL = 1024 (chain curve) andL = 262 144
(dotted curve) together with the normalized distribution obtained from the asymptotic CVA (full
curve). The inset shows the third moment of the magnetization, as a function of logL, for the
CVA (full curve) and for the simulation (◦).

k-independence ofC(k) holds only forβ = 1
4. Results of the least-squares fit for all data

on the interval [210, 218], in the form (VL/L1/2)1/β ∼ aβ + bβ logL, are given in table 2;
the approximate constancy ofb1/4(k) verifies the conclusion. Thus under the assumption
made above, this provides independent justification of the conclusionβ = 1

4.
We also observe from table 2 thataβ(k) and henceL0(k) depends strongly onk for all

β. We interpret this as indicating that the correlations are important on the scale ofL0 and
hence we cannot use the above argument to determine thek dependence ofL0(k).

To summarize, we now have numerical evidence for logarithmic corrections, and our
data, when supplemented by a heuristic argument, supports the prediction (6) (withβ = 1

4)
obtained with the help of dynamical renormalization techniques [7].

3. The biased case

In the biased case we generated data forL 6 218 for λ = 1
4. As compared to the data

reported in [5], this provides much better evidence for the asymptotic formVL ' BL2/3

predicted by both the KPZ and CVA approximations. We note that for the biased model
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Figure 4. Finite-size effects in the magnetization forλ = 1
4 : the deviation from〈ML〉/L = 1

3
versus system sizeL is given in a log–log plot. The full line is the CVA, the circles are
simulation results.

the differential equation for the height evolution is the usual KPZ equation

dh

dt
= ν

d2h

dx2
+ v1

dh

dx
+ v2

(
dh

dx

)2

+ η(x, t) + higher order terms (9)

where now the the nonlinear quadratic term is relevant and it changes the power of the
growth of fluctuations in time from1

2 to 2
3.

We now compare the simulation results more closely with those obtained analytically
for the asymptotic case of the CVA (the continuum limit):BCV = 1.544λ1/3(1 −√

λ)2/3(1 + √
λ)−2 [5]. Note that BCV vanishes atλ = 0, 1 and has a maximum at

λ = 7 − 4
√

3 ≈ 0.0718. As shown in figure 2, the values obtained from the CVA seem
to be strikingly close to the simulation values in the asymptotic limit. The data suggests
that the constants of proportionalityB for the variance in the two cases are extremely close
if not identical. To check whether the CVA was close only for this particular value ofλ,
we studied two more values of biasλ = 1

2, 1
8. As shown in figure 2 for both the cases,

we observed that the CVA seemed to give values which are extremely close to the actual
values.

In order to have a better estimate of the accuracy of the CVA, we also studied the whole
distribution of magnetization. The continuum limit CVA gives for the distribution of the
magnetization values the fourth power of an Airy function [5], with a somewhatad hoc
cut-off suggested by the discrete CVA (the simulations and the CVA both give a Gaussian
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distribution forλ = 1). This function has an asymmetry about the mean value. In figure 3 we
compare this CVA limiting distribution with the distribution of magnetization determined
from simulations, with all distributions normalized to have a mean of 0 and a standard
deviation of 1. It can be seen that the actual distribution shows the same characteristic
features as the CVA result; moreover, looking at the distributions for differentL values
suggests a slow approach of the distribution towards the Airy function with increasing size
L. However, if we look at the leading measure of asymmetry in the distribution—the
normalized third moment〈(M − 〈M〉)3〉/〈(M − 〈M〉)2〉3/2—then we observe (see figure 3
inset) that the actual values and those obtained from the CVA are quite different.

We also studied the values of average magnetization obtained for finite-size systems.
As noted in [5] the exact asymptotic value and that obtained from the CVA coincide and are
given by 〈ML〉 = µL, whereµ = 1−√

λ

1+√
λ

. In figure 4, we plot the approach of the average
magnetization to the asymptotic value. Both the approach for the CVA and that for the
actual data show very similar behaviour.

At the end of this analysis, we are left with the somewhat puzzling result, that though
the CVA does not reproduce, even qualitatively, the results for the unbiased case, it seems
to be an extremely accurate description for the biased case.
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We thank T Hwa, G Scḧutz and H Spohn for useful discussions and communications. GTB
acknowledges financial support from the DOE under grant DE-FG-90ER-40542, and from
the Monell foundation. BS and JLL were supported in part by NSF grant 9213424. JLL
would also like to thank DIMACS and its supporting agencies the NSF under contract
STC-91-19999 and the NJ Commission on Science and Technology.

References

[1] See articles by Abraham D B, Diehl H W and Jasnow D 1986Phase Transitions and Critical Phenomena
vol 10, ed C Domb and J L Lebowitz (New York: Academic)

[2] Krug J and Spohn H 1991 Kinetic roughening of growing surfacesSolids Far from Equilibriumed C Godreche
(Cambridge: Cambridge University Press)

[3] Edwards S F and Wilkinson D R 1982Proc. R. Soc.A 381 17
[4] Kardar M, Parisi G and Zhang Y C 1986Phys. Rev. Lett.56 889
[5] Derrida B, Lebowitz J L, Speer E R and Spohn H 1991J. Phys. A: Math. Gen.24 4805
[6] Derrida B, Lebowitz J L, Speer E R and Spohn H 1991Phys. Rev. Lett.67 165
[7] Barma M, Pascuski M, Hwa T and Majumdar S 1992Phys. Rev. Lett.69 2735
[8] Devillard P and Spohn H 1992J. Stat. Phys.66 1089
[9] Barkema G T, Marko J f and Widom B 1994Phys. Rev.E 49 5303
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